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Abstract: This paper investigates the problem of observer design for a class of nonlinear systems with time-

delay and uncertain nonlinearity. Firstly, using the Mean-value Theorem and combining constructing the 

Lyapunov-Krasovskii functional, the convergence conditions of nonlinear observer for a class of nonlinear 

systems with time-varying delay and uncertain nonlinearity are established in terms of a linear matrix 

inequality. Then the new sufficient conditions are derived to ensure the convergence of the observer for a class 

of nonlinear systems with constant time-delay and uncertain nonlinearity. The simulation results are presented 

to show the effectiveness of the proposed method. 
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1 Introduction 
State estimation for nonlinear systems is a long 

standing problem that has been addressed with 

different looks. In practice, all state variables are 

rarely available for direct on-line measurement. In 

all circumstances, there is an abundant need for a 

reliable estimation of the unmeasurable state 

variable. For this special task, a state observer is 

usually used. In a general way, there are many 

major design methods in both linear and nonlinear 

systems. In the case of linear systems, early result 

can be found in [1, 2], and many people are still 

doing further research. In the case of nonlinear 

systems, observer design for Lipschitz systems was 

first considered by Thau in [3], and a sufficient 

condition to ensure the asymptotic stability of the 

observer was obtained. Thau’s condition is a very 

useful analysis tool but does not address the 

fundamental design problem. Encouraged by Thau’s 

result, several authors studied the observer design 

problem for Lipschitz systems. The use of 

Lyapunov function and the Bellman-Gronwall 

lemma for this design problem with application in 

feedback stabilization were considered by Zak in [4]. 

An observer design methodology for a class of 

nonlinear systems in which the nonlinearity was 

assumed to be Lipschitz was presented in [5]. When 

the system fails to be put in certain form of 

observability, high-gain observer design reveals as a 

powerful method that is often used to reconstruct the 

system states under the assumption that the vector 

nonlinearity is globally or locally Lipschitz, see [6-

7]. By the coordinate transformation approach, a 

new constant gain observer design methodology for 

a class of multi-output nonlinear systems was 

proposed in [8]. 

Time-delays are inherent in many engineering 

systems, and such time-delays can limit and degrade 

the achievable performance of controlled systems, 

and even induce instability. Delay terms lead to 

infinite dimensionality in the characteristic 

equations, making time-delay systems difficult to 

control with classical control methods. Hence 

stability analysis and observer design for time-delay 

systems has been investigated in recent years [9-22]. 

In [9], a geometric study of reduced order observer 

design for discrete-time nonlinear systems was 

given. Using the center manifold theory for maps, 

the error convergence for the reduced order 

estimator for discrete-time nonlinear systems was 

established. In [10], a new approach to the nonlinear 

observer design problem in the presence of delayed 

output measurements was presented. The proposed 

nonlinear observer possesses a state-dependent gain 

which was computed from the solution of a system 

of first-order singular partial differential equations. 
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In [11], an adaptive observer was developed for 

single-input single-output nonlinear systems that 

can be transformed into a certain observable 

canonical form. In [12], a discrete-time observer 

design procedure based on linear matrix inequalities 

was presented for a class of nonlinear system and 

measurement models. A common framework was 

provided to design observers according to a variety 

of performance criteria. In [15], the problem of 

observer design for a class of nonlinear discrete-

time systems with time-delay was considered. A 

new approach of nonlinear observer design was 

proposed for the class of systems. By using 

differential mean value theorem, which allows 

transforming a nonlinear error dynamics into a 

linear parameter varying system, and based on 

Lyapunov stability theory, an approach of observer 

design for a class of nonlinear systems with time-

delay was proposed in [17]. The sufficient 

conditions, which guarantee the estimation error to 

asymptotically converge to zero, were given. 

This paper considers the problem of observer 

design for a class of nonlinear systems with time-

delay and uncertain nonlinearity. Using a novel 

Lyapunov-Krasovskii functional, the convergence 

conditions of nonlinear observer for a class of 

nonlinear systems with time-varying delay and 

uncertain nonlinearity are established, which are 

expressed in terms of a linear matrix inequality. 

Then the new sufficient conditions are derived to 

ensure the convergence of the observer with 

constant time-delay and uncertain nonlinearity. And 

what is more, the proposed LMI-based results are 

computationally efficient as they can be solved 

numerically by employing the LMI toolbox in 

Matlab. The simulation results are presented to 

show the effectiveness of the proposed method. 

This paper is organized as follows. In Section 2, a 

class of nonlinear systems with time-delay is studied, 

and the corresponding observer is introduced. Using 

a novel Lyapunov-Krasovskii functional, the 

sufficient conditions that guarantees the observer 

error converges asymptotically to zero expressed as 

matrix inequalities are established. In Section 3, a 

numerical example is given to show the 

performances of our method. Finally, some 

conclusions and remarks are drawn in Section 4. 

Though out this paper, we denote by R the set of 

real numbers, n mR  denotes the space of n m  real 

matrix and I denotes an identity matrix with 

appropriate dimension. The notation 0A  (resp. 

0A ) means that the matrix A is positive definite 

(resp. negative definite). TA is the matrix transpose 

of A. The symbol   denotes the elements below the 

main diagonal of a symmetric block matrix. 

 

 

2 Problem statement and main result 
In this section, the analysis of the observer is 

given. Under the appropriate assumptions, a 

nonlinear observer is developed. 

Let us consider the nonlinear system with time-

varying delay 

1

2

2

( ) ( ) ( ( )) ( ( ), ( ))

( ( ( )), ( )),

( ) ( ), [ ,0],

( ) ( ),

h

h
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G f x t h t u t

x t t t h
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where nx R is the state vector, mu R  is the 

system input, py R is the output, , ,n n

hA A R 
 

, ,n n

hG G R  p nC R  are all constant matrices. In 

the systems (1), ( )h t  is the time-delay satisfying 
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12 2 1

0 ( ) ,

,

( ) 1,

h h t h

h h h

h t 

  

 

 

 

and ( ) ([ ,0], )nt C h R   is the initial function. We 

assume that (A, C) is observable. 

To complete the system description the following 

assumption is taken into consideration. 

Assumption 1 The nonlinearity vectors 

( ( ), ( )), 1,2,if x t u t i  are globally Lipschitz with 

respect to ( ),x t  uniformly to ( ),u t  and 

( ) nx t R  and ( ) mu t R    there exist 

constant matrices n n

iE R  and , 1,2,n n

iN R i   

such that the Jacobian of uncertain nonlinearity 

verify 

( )

( , ( ))
( ( ), ( )) , 1,2,i

i i

s x t

f s u t
E M x t u t N i

s 


 


   (2) 

where ( ( ), ( ))M x t u t  is unknown matrix satisfying 

( ( ), ( )) ( ( ), ( )) .TM x t u t M x t u t I  

We introduce the following lemmas which will be 

used in setting the proofs of the next statements. 

Lemma 1 [23]  Given constant symmetric matrices 

1 2 3, , ,S S S and 1 1 0,TS S   3 3 0,TS S   then 
1

1 2 3 2 0TS S S S   if and only if 

1 2

2 3

0.
T

S S

S S

 
 

 
 

Lemma 2 [24]  Let D, E and F be real matrices of 

appropriate dimensions with TF F I , then for 

any scalar 0   we have the following inequality: 
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1 .T T T T TDFE E F D DD E E     

Lemma 3 [25]  For any constant symmetric matrix 

0,R  scalar 0,h  and vector function 

( ) :[ ,0] nx h R    such that the following integral is 

well defined, then 

( ) ( ) ( ) ( ),
t

T T

t h

R R
h x s Rx s ds z t z t

R R

 
   

 
  

where ( ) ( ) ( ) .
T

T Tz t x t x t h     

Consider the following nonlinear observer 

dynamical equation 

1

2

ˆ ˆ ˆ ˆ( ) ( ) ( ( )) ( ( ), ( ))

ˆ ˆ( ( ( )), ( )) ( ( ) ( )).

h

h

x t Ax t A x t h t Gf x t u t

G f x t h t u t L y t Cx t

   

   
    (3) 

Let ˆ( ) ( ) ( ).x t x t x t   The estimation error 

dynamic is given by 

1 2( ) ( ) ( ( )) ,h hx t A LC x A x t h t G f G f           (4) 

where  

    1 1 1
ˆ( ( ), ( )) ( ( ), ( )),f f x t u t f x t u t    

2 2 2
ˆ( ( ( )), ( )) ( ( ( )), ( )).f f x t h t u t f x t h t u t      

Theorem 1   Suppose that Assumption 1 is satisfied. 

Then the observer error dynamic (4) is 

asymptotically stable, if there exist a matrix L, 

positive definite matrices 1 2 3 1 2, , , , ,Q Q Q R R n nP R   

and positive scalars 0, 1,2,3,4,i i    such that the 

following linear matrix inequality holds: 

1 15 16 17
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1
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3
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0 0 0

* 0 0 0 0 0 0

* * 0 0 0 0 0 0

* * * 0 0 0 0

0,* * * * 0 0

* * * * * 0 0 0

* * * * * * 0 0

* * * * * * * 0

* * * * * * * *

hR PA

R

I

I

I

I

I






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 
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 

 
 
 
 
 

 

 

(5) 

where 

15 16 1 17 2
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Proof. Consider the following Lyapunov-Krasovskii 

functional for the system (4)
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        (6) 

The time derivative of 
1( )V t  along the trajectory of 

the error dynamic (4) is  

1

1 1 2

2

( )[( ) ( )] ( )

( ) ( ) ( )

( ) ( ) ( ( ))

( ( )) ( ).
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Using the Mean-value Theorem and combining 

Assumption 1, we write that  

1 1 1

1
1

0
ˆ( ) ( ( ) ( ))

1

1 1
0

ˆ( ( ), ( )) ( ( ), ( ))
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and 
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where   

            ˆ( , ) ( ) ( ( ) ( )),t x t x t x t      
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We conclude by Lemma 1 that 0V  if 
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The last integral inequality can be rewritten as 
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(17) is equivalent to (5) by Lemma 1. From (5) we 

get 0.V   This means that the system (4) is 

asymptotically stable. This ends of our proof. 

Corollary 1. Suppose that Assumption 1 is 

satisfied. Consider system (1) with 
1 0h  , then the 

observer error dynamic (4) is asymptotically stable, 

if there exist a matrix L, positive definite matrices 

1 2 1, , ,Q Q R ,n nP R   and positive scalars 

0, 1,2,3,4i i    such that the following linear 

matrix inequality holds: 
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Proof.  Let us choose the Lyapunov-Krasovskii 

functional candidate 
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Using the similar method shown in the proof of 

Theorem 1, the inequality (18) can be obtained and 

the detailed proof is omitted. 

Consider the nonlinear system with time-delay 
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where nx R  is the state vector, 
mu R  is the 

system input, py R  is the output, , ,n n

hG G R   
p nC R   are all constant matrices. 

( ) ([ ,0], )nt C h R    is the initial function. We 

assume that (A, C) is observable. 

Consider the following nonlinear observer 

dynamical equation 
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Theorem 2.  Suppose that Assumption 1 is satisfied. 

Then the observer error dynamics (21) is 

asymptotically stable, if there exist a matrix L, 

positive definite matrices 1 1, , ,n nP Q R R   and 

positive scalars 0, 1,2,3,4i i    such that the 

following  linear matrix inequality holds: 
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Proof. Consider the Lyapunov-Krasovskii 
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Using the similar method shown in the proof of 

Theorem 1, the inequality (22) can be obtained and 

the detailed proof is omitted. 

 

 

3 Numerical example  
Consider the nonlinear system (19) with 
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Choose 

 30 1 ,
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 Solving the inequality (22), we get the following 

positive definite matrices: 
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According to Theorem 2, the observer error 

dynamics (21) is asymptotically stable. 

The observer dynamical equation is given by 

1

2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ( ), ( ))

ˆ ˆ( ( ), ( )) ( ( ) ( )).

h

h

x t Ax t A x t h Gf x t u t

G f x t h u t L y t Cx t

   

   
 

When  

1

1

2

sin
,

sin

x
f

x

 
  
 

 

and  

1

2

2

4sin( )
,

4sin( )

x h
f

x h

 
  

 
 

simulation results are shown in Fig. 1 and 2. It   is 

seen   from   Fig. 1  and  2   that  the   observer  error 

dynamic is asymptotically stable.  
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Fig. 1  The state x1 and its estimate 
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   Fig.2  The state x2 and its estimate 

 

 

4.  Conclusion 
The main purpose of this paper is to offer a 

systematic algorithm for designing an observer for a 

class of nonlinear systems with unknown 

nonlinearity vector and time-varying delay. Firstly, 

the sufficient conditions are established in terms of a 

matrix inequality, which guarantee the nonlinear 

observer for a class of nonlinear systems with time-

varying delay is an asymptotically stable observer. 

Then, the new sufficient conditions are presented, 

which ensure the convergence of the observer for a 

class of uncertain nonlinear systems with constant 

delay. Finally, an illustrative example is given to 

demonstrate the utilization of the results. 
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